1,353 research outputs found

    Structural relaxation in a supercooled molecular liquid

    Full text link
    We perform molecular-dynamics simulations of a molecular system in supercooled states for different values of inertia parameters to provide evidence that the long-time dynamics depends only on the equilibrium structure. This observation is consistent with the prediction of the mode-coupling theory for the glass transition and with the hypothesis that the potential energy-landscape controls the slow dynamics. We also find that dynamical properties at intermediate wavenumber depend on the spatial correlation of the molecule's geometrical center.Comment: 7 pages, 4 figures, Europhys. Lett. in pres

    Slow dynamics in a primitive tetrahedral network model

    Full text link
    We report extensive Monte Carlo and event-driven molecular dynamics simulations of the fluid and liquid phase of a primitive model for silica recently introduced by Ford, Auerbach and Monson [J. Chem. Phys. 17, 8415 (2004)]. We evaluate the iso-diffusivity lines in the temperature-density plane to provide an indication of the shape of the glass transition line. Except for large densities, arrest is driven by the onset of the tetrahedral bonding pattern and the resulting dynamics is strong in the Angell's classification scheme. We compare structural and dynamic properties with corresponding results of two recently studied primitive models of network forming liquids -- a primitive model for water and a angular-constraint free model of four-coordinated particles -- to pin down the role of the geometric constraints associated to the bonding. Eventually we discuss the similarities between "glass" formation in network forming liquids and "gel" formation in colloidal dispersions of patchy particles.Comment: 9 pages, 10 figure

    On Static and Dynamic Heterogeneities in Water

    Full text link
    We analyze differences in dynamics and in properties of the sampled potential energy landscape between different equilibrium trajectories, for a system of rigid water molecules interacting with a two body potential. On entering in the supercooled region, differences between different realizations enhance and survive even when particles have diffused several time their average distance. We observe a strong correlation between the mean square displacement of the individual trajectories and the average energy of the sampled landscape

    A Chandra X-ray study of the young star cluster NGC 6231: low-mass population and initial mass function

    Get PDF
    NGC6231 is a massive young star cluster, near the center of the Sco OB1 association. While its OB members are well studied, its low-mass population has received little attention. We present high-spatial resolution Chandra ACIS-I X-ray data, where we detect 1613 point X-ray sources. Our main aim is to clarify global properties of NGC6231 down to low masses through a detailed membership assessment, and to study the cluster stars' spatial distribution, the origin of their X-ray emission, the cluster age and formation history, and initial mass function. We use X-ray data, complemented by optical/IR data, to establish cluster membership. The spatial distribution of different stellar subgroups also provides highly significant constraints on cluster membership, as does the distribution of X-ray hardness. We perform spectral modeling of group-stacked X-ray source spectra. We find a large cluster population down to ~0.3 Msun (complete to ~1 Msun), with minimal non-member contamination, with a definite age spread (1-8 Myrs) for the low-mass PMS stars. We argue that low-mass cluster stars also constitute the majority of the few hundreds unidentified X-ray sources. We find mass segregation for the most massive stars. The fraction of circumstellar-disk bearing members is found to be ~5%. Photoevaporation of disks under the action of massive stars is suggested by the spatial distribution of the IR-excess stars. We also find strong Halpha emission in 9% of cluster PMS stars. The dependence of X-ray properties on mass, stellar structure, and age agrees with extrapolations based on other young clusters. The cluster initial mass function, computed over ~2 dex in mass, has a slope Gamma~-1.14. The total mass of cluster members above 1 Msun is 2280 Msun, and the inferred total mass is 4380 Msun. We also study the peculiar, hard X-ray spectrum of the Wolf-Rayet star WR79.Comment: 25 pages, 36 figures, accepted for publication on Astronomy and Astrophysic

    Nonlinear Energy Response of Glass Forming Materials

    Full text link
    A theory for the nonlinear energy response of a system subjected to a heat bath is developed when the temperature of the heat bath is modulated sinusoidally. The theory is applied to a model glass forming system, where the landscape is assumed to have 20 basins and transition rates between basins obey a power law distribution. It is shown that the statistics of eigenvalues of the transition rate matrix, the glass transition temperature TgT_g, the Vogel-Fulcher temperature T0T_0 and the crossover temperature TxT_x can be determined from the 1st- and 2nd-order ac specific heats, which are defined as coefficients of the 1st- and 2nd-order energy responses. The imaginary part of the 1st-order ac specific heat has a broad peak corresponding to the distribution of the eigenvalues. When the temperature is decreased below TgT_g, the frequency of the peak decreases and the width increases. Furthermore, the statistics of eigenvalues can be obtained from the frequency dependence of the 1st-order ac specific heat. The 2nd-order ac specific heat shows extrema as a function of the frequency. The extrema diverge at the Vogel-Fulcher temperature T0T_0. The temperature dependence of the extrema changes significantly near TgT_g and some extrema vanish near TxT_x.Comment: 20 pages, 10 figure

    Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-H\"uckel approximation

    Full text link
    We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accomodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each others, the rearrangement of the surface charge distribution invariably produces anti-parallel dipolar doublets, that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions can not be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length, short compared with the size of the colloidal particles, is required in order to observe the attraction between like charged complexes due to the non-uniform distribution of the electric charge on their surface ('patch attraction'). On the other hand, by changing the polyelectrolyte/particle charge ratio, the interaction between like-charged polyelectrolyte-decorated (pd) particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the non-uniformity of their surface charge distribution.Comment: 24 pages, 9 figure

    Investigation of the relation between local diffusivity and local inherent structures in the Kob-Andersen Lennard-Jones model

    Full text link
    We analyze one thousand independent equilibrium trajectories of a system of 155 Lennard Jones particles to separate in a model-free approach the role of temperature and the role of the explored potential energy landscape basin depth in the particle dynamics. We show that the diffusion coefficient DD can be estimated as a sum over over contributions of the sampled basins, establishing a connection between thermodynamics and dynamics in the potential energy landscape framework. We provide evidence that the observed non-linearity in the relation between local diffusion and basin depth is responsible for the peculiar dynamic behavior observed in supercooled states and provide an interpretation for the presence of dynamic heterogeneities.Comment: minor text changes, references adde

    Density minimum and liquid-liquid phase transition

    Full text link
    We present a high-resolution computer simulation study of the equation of state of ST2 water, evaluating the liquid-state properties at 2718 state points, and precisely locating the liquid-liquid critical point (LLCP) occurring in this model. We are thereby able to reveal the interconnected set of density anomalies, spinodal instabilities and response function extrema that occur in the vicinity of a LLCP for the case of a realistic, off-lattice model of a liquid with local tetrahedral order. In particular, we unambiguously identify a density minimum in the liquid state, define its relationship to other anomalies, and show that it arises due to the approach of the liquid structure to a defect-free random tetrahedral network of hydrogen bonds.Comment: 5 pages, 4 figure
    • …
    corecore